Automatic Detection of Paint
Defects using Machine Learning

DEsIGN DOCUMENT

Team: sddec21-17
Client: Danfoss Power Solutions
Adviser: Mohamed Selim, Ph.D.

Team Members:
Brett White
Corrine Dornbach
Josh Moeller
Khairi Norizan
Lucas Keller

Contact Us: sddec21-17@iastate.edu
Website: https://sddec21-17.sd.ece.iastate.edu

Revised: April 25, 2021

Executive Summary

Development Standards & Practices Used

Our development standards will follow the IEEE Software Engineering guidelines and standards.
These standards will ensure that we deliver a high-quality product that satisfies the needs and
wants of Danfoss. When developing the design and the model itself, we will use Agile, an iterative
design process. Major development stages are broken into chunks that can be adapted throughout
development, allowing us to maintain a small buffer of research-orientated features that can be
used in future implementation while simultaneously involving our Danfoss contact in the design
process.

Summary of Requirements

Our development and design requirements have a focus on a tested deep learning solution that is
shipped with analysis in the areas of the defective pump classes. The primary requirements are as
follows:
e Use and shipment of deep learning software to classify defective pumps from sample
images
Both hardware and software integration to automatically capture, analyze, and save images
The solution must be capable of inference in < 10 seconds for a pump within the camera
field of view
Precision requirement of 0.7 for binary defect classification
Recall requirement of 0.8 for binary defect classification, false positives are generally
acceptable
e General descriptive statistics for each defect class should be reported by end of the
semester.
e The solution must be capable of running 24 hours a day, while still performing inference in
< 10 seconds for a given pump

Applicable Courses from Iowa State University Curriculum

Com S 474 - Introduction to Machine Learning:

Provides background knowledge on ML techniques & some experience with implementation.
Stat 330 - Probability and Statistics for Computer Science:

Useful for evaluating which paint defects are best to focus on in terms of return on investment.
Helpful for understanding the bias-variance tradeoff present in our model.

SE 309 - Software Development Practices:

Provides knowledge on best practices when working in team environments. Especially useful for
source control / CICD and project planning methods (like AGILE).

HCI 575 - Computational Perception:

Provides knowledge on image processing techniques especially in areas of morphology, image
analysis, image transformations.

Tangentially related:
Math 207 - Matrices and Linear Algebra:

Useful for image transformations & manipulations that help train our model to understand it.
Example: rotations or principal component analysis. Additionally helpful for understanding
vectorization present in our model that allows us a real-time solution.

New Skills/Knowledge Acquired that was not Taught in Courses

Deep Learning: Object Detection
Important to implement this solution. In order to provide a solution to the problem, it is necessary
to understand the Deep Learning algorithms.

Software and Hardware Components Integration
Since the solution requires hardware such as cameras, thus, the knowledge in software and
hardware integration is important. The integration will be involving the model and the cameras.

Table of Contents

1 Introduction

1.1 Acknowledgement 4
1.2 Problem and Project Statement 4
1.3 Operational Environment 5
1.4 Requirements 5
1.5 Intended Users and Uses 6
1.6 Assumptions and Limitations 6
1.7 Expected End Product and Deliverables 6
2 Project Plan
2.1 Task Decomposition 7
2.2 Risks And Risk Management/Mitigation 7
2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 8
2.4 Project Timeline/Schedule 8
2.5 Project Tracking Procedures 9
2.6 Personnel Effort Requirements 9
2.7 Other Resource Requirements 9
2.8 Financial Requirements 9
3 Design
3.1 Previous Work And Literature 10
3.2 Design Thinking 11
3.3 Proposed Design 11
3.4 Technology Considerations 12-13
3.5 Design Analysis 13
3.6 Development Process 14
3.7 Design Plan 14
4 Testing
4.1 Unit Testing 15
4.2 Interface Testing 15
4.3 Acceptance Testing 15
4.4 Results 16-17
5 Implementation 18
6 Closing Material
6.1 Conclusion 19
6.2 References 19

6.3 Appendices 20

1 Introduction

1.1 ACKNOWLEDGMENT

We would like to express our gratitude to our Senior Design Instructor, Dr. Lotfi Ben Othmane, for
giving us the opportunity to participate and work on this project. We would also like to thank our
Faculty Advisor, Dr. Mohamed Selim, for his insightful comments and valuable guidance throughout
the research process and project development. Importantly, we would like to acknowledge the team
at Danfoss, especially Mr. Mohamed Eldakroury, for providing the necessary resources to implement
our system. Danfoss has supplied us with factory simulations, data, and images on defective pumps,
spreadsheets of defect information, and knowledge of the problem.

1.2 PROBLEM AND PROJECT STATEMENT
Problem Statement

Danfoss Central Paint and Packaging manufactures painted pumps. Over an 18-month
period, there have been a large number of defective pumps produced where the paint job
has either been incomplete or poor. Approximately one-eighth of these defects were
classified as high-impact defects which indicates that they were most likely scrapped. The
combined cost of scrap and rework for both high-impact and low-impact defects for this
period is very high, and Danfoss would like to reduce, or even completely eliminate, this
cost.

Solution Approach

Our solution is to design and implement a defect detection system that classifies the
different occurrences of pump types: non-defective, no paint, low paint, splattered paint.
When a defective pump is detected, the system sounds an alarm to notify a staff member
who can repair the malfunctioning painting robot. This helps achieve our goal to reduce
the number of defective units produced by 40% and, therefore, reduce the overall financial
loss.

This solution is important because it will help Danfoss Central Paint and Packaging reduce the
number of defective hydrostatic pumps produced by the painting process. This will reduce the
number and length of delays in providing pumps to clients and save Danfoss a substantial amount
of money by reducing the need for rework or scrap of pumps. In order to approach this, we are
designing a defect detection station to capture images of a hydrostatic pump to determine if the
pump is defective. When a defect is detected, the system notifies the workers.

This solution is meant to reduce the time it takes to remake pumps and subsequently save Danfoss
money. By having this system in place, we can detect any defects faster and more accurately and
consequently fix them faster.

1.3 OPERATIONAL ENVIRONMENT

This solution is intended for use within the Danfoss Central Paint and Packaging lanes. The
hardware and software will be installed in such a way that the lighting is constant. Furthermore,
this implementation will have no exposure to water or extreme temperatures.

1.4 REQUIREMENTS

Main Requirement
The main requirement for defect detection involves Danfoss’s production line for various pumps.

Primarily, we plan to implement an early detection system that initiates a stop signal for the
assembly line and therefore reduces the number of defective units by 40%.

The defect detection will be focused on identifying 3 types of defects:
e No paint
e Light paint
e Splatter/orange peel paint

Functional Requirements

A primary functional requirement of our solution includes the creation of a defect-detection station
that is mostly independent of the Danfoss assembly line. Independent in this context means not
connected to their signaling system and network infrastructure. This independent station will
utilize up to two cameras to analyze the pumps and will prevent the continued painting of defective
pumps before the paint-drying chamber on the assembly line. Once the paint defect is detected, a
physical alarm would then be triggered which requires human intervention.

Economic Requirements:
The total budget supplied by Danfoss is $5,000. Beyond monetary assistance, they will also be

aiding us with the development of a dataset consisting of several thousand images. At the moment,
paint defects have afflicted Danfoss Power Solutions with large losses over an 18-month period.
Hence, the overall goal for this solution is to reduce the number of paint defects by 40%.

Software/Hardware Requirements:
The software requirements for this solution include the development and integration of a deep
learning algorithm that will classify pumps as defective or non-defective.

The hardware requirements primarily include two cameras and a computing station to detect a
pump, capture several images, and perform classification. Additionally, the solution requires an
alarm to audibly inform workers of the presence of a defective pump.

1.5 INTENDED USERS AND USES

The final system is intended for use by Danfoss Power Solutions in their central paint and
packaging lanes to help detect paint defects on hydrostatic pumps. Our solution will reduce the
time to detect defective units and therefore cut down on the number of total defects. The primary
audience of our implementation is assembly line workers present on the floor who are not actively
watching for defects. Besides intervention upon alarm signals, interaction will be reduced to
maintenance like basic cleaning.

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions Limitations
e Pumps near the exit of the paint e Defect detection station must be
station and packing lanes will be confined to one area so that it doesn't
orientated in the same direction disrupt the rest of the product line
e Lighting will be consistent for all e The camera must be placed in such a
images captured way that painted surfaces are visible to
e Pumps with a low sample size will be the vision system
handled effectively by the ML model e Total budget of $5,000 for all
computing equipment and cameras
needed

1.7 ExPECTED END PRODUCT AND DELIVERABLES

We are expected to deliver a working prototype system for detecting defective paint jobs on pumps
by December 2021. The system will be able to capture images of pumps, accurately classify pumps as
defective or non-defective, and notify staff when a defect is detected.

2 Project Plan

This section describes our planned tasks and timeline of completion. Other than planned tasks and
timeline of completion, the risk assessment is also described according to our planned tasks. We

then enumerate the resources required to complete this solution.

2.1 TASK DECOMPOSITION

Automatic Detection of Paint
Defects using Deep Learning

v

Server Assignment

l

I

Develop the software

l—l

_l

¥

Testing

2.2 Risks AND Risk MANAGEMENT/MITIGATION

Sample Set

v
Server Configuration Database design Main (;odg for Hardware Software
Application
— l "
4
Software Hardware ?St Image Test Model Learning Test Deep Learning
apturing accuracy
Generate Sample Send Image . Model Tuni
Statistics Sequence Data Augmentation | |Capture Pump Image odel Tuning
Implement Dee Software and
LeaFr,nin all orith'rD'n Integration Hardware Test
9ee (Holistic Test)
Report Model
Statistics to Client
|
Deployment

Sample sets carry a moderate risk because the number of samples received or taken partially
corresponds to the accuracy of the model. To ensure this risk stays low, Danfoss will supply us with
1000+ images of each pump set in high-resolution captured at two different angles.

Sample Set Risk Assessment: 2/10

Inaccurate Model

An inaccurate model can pose a high risk during the development process. By creating a descriptive
list of statistics for each sample class, we can mitigate the risk while also increasing the overall
accuracy of the design and model.

Inaccurate Model Risk Assessment: 7/10

Hard To Detect Defects

Hard-to-defect detects are difficult to spot with an untrained eye and can house a small amount of
risk in the overall detection process. By using high-resolution capture, these defects can be easier to
spot and detect in the model’s vision system.

Defect Detection Risk Assessment: 3/10

Server Assignment
Server assignment will carry a relatively low risk as it is composed solely of server configuration.

Server Configuration Risk Assessment: 2/10

Software Development

Software development will house most of the product risk. Issues can arise early on in the
development process that can later affect the data augmentation or imaging sequence. These issues

then can have an overall effect on the implementation of the deep learning algorithm and eventual
deployment.

Software Development Risk Assessment: 7/10

Testing

The testing phase will carry a relatively low risk. The major points of risk in testing arise from the
model’s learning. If images are labeled incorrectly, it can have an effect on the overall accuracy of
the model. We will want to be careful not to wipe out any data or worse, destroying our model
during the testing process.

Testing Risk Assessment: 4/10
Deployment

The overall deployment risk was mitigated due to the decision by Danfoss that the final solution
will not be present on the assembly line or connected to the overall Danfoss network.

Server Deployment: Risk Mitigated

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Communication is still ongoing with the client on what metrics or evaluation criteria are defined
for the product. It is clear that a target of 40% of errors should be mitigated, but it is unclear what
an acceptable false-positive rate would be for our alarm signaling or classification. We have chosen
to aim for a recall of 0.8 and a precision of 0.7. This focus on recall should help reach the target of
40% defect reduction.
The remaining milestones to be met for Fall 2021 are:

1. Label images from client & configure training environment

2. Perform analysis on defect classes and data augmentation on the dataset

Train the model, tune the model

Test the pipeline, integrate software and hardware

voaow

Deploy the model, deliver analysis & model statistics

2.4 PROJECT TIMELINE/SCHEDULE

23-Aug-21 12-Sep-21 2-Oct-21 22-Oct-21 11-Nov-21 1-Dec-21

Label images

Establish Training Environment _

Establish YOLO Baseline

Generate Descriptive Statistic

Data Augmentation Development

Begin Model Tuning _
Test Development V1 _

Report Model Statistic (Finalize)

Server Configuration _

Begin Model Training

SW/HW Integration
SW/HW Integration Testing
Model Deployment

Preparing Documentation

The above timeline assumes 2 week sprint periods ending and starting every other Monday.

2.5 PROJECT TRACKING PROCEDURES

By utilizing GitLab, we can create multiple tickets for each project milestone that help us break
down major sections into subsections that can be assigned to each member with a due date to keep
development on track. Slack is being used for communication and sharing information among the
group members. Additionally, we use Microsoft Teams and Zoom to meet with our client and
faculty advisor, respectively, while email is used to communicate with our client, faculty advisor,
and anyone else with whom we need to communicate outside of meeting times. Together, GitLab,
Slack, Microsoft Teams, Zoom, and email provide us with our primary project management tools.

2.6 PERSONNEL EFFORT REQUIREMENTS

In general, each team member contributes approximately 8 to 10 hours per week towards the
implementation of our defect detection system. These hours can be broken down into 3 categories:
technical implementation, communication, and planning.

First, it is essential to the implementation of our solution that each team member contributes 3+
hours a week in technical development. Without technical development, the solution is solely
theory and paperwork. Beyond technical development, 2 to 3 hours a week are spent on
communications such as meetings, emails, and Slack messages. Without communication, our
ability to prioritize tasks is lost. Lastly, 2 to 3 hours per week are put towards planning such as
writing documentation or creating system diagrams.

2.7 OTHER RESOURCE REQUIREMENTS

There are few resources that we need in order to accomplish this deep learning solution.
Predominantly, we need Danfoss to provide us with a dataset of more than 1000 images from each
defect class with descriptions that will be used for the image labeling process. These two
requirements will be vital for high accuracy model training.

To provide the aforementioned resources, we also need Danfoss to purchase image capturing
equipment for which Danfoss plans to utilize in our prototype and their long term solution.
Because the equipment is essential to our solutions viability, we have communicated requirements
to the image capturing equipment and its orientation. The requirements for the image capturing
equipment are that it needs to be FHD or higher resolution, have (reasonably) controlled lighting,
and capture pump images from two controlled angles. Meaning, we require camera placement such
that two cameras capture four total pump sides for each pump being analyzed.

As a stretch goal, Danfoss will provide us a temporary computing station that allows us to deploy
our model and feed the captured images for real time analysis. It has been communicated that
Danfoss IT would not allow an inference station long term, but it would be an excellent
demonstration of our model’s capabilities and we plan to deploy to their servers if given the
opportunity.

Lastly, besides the resources from Danfoss, we require computing resources from lowa State
University ETG. Specifically, we need GPU compute resources to accelerate model training. Since
the training time for high epochs is quite significant, utilizing Iowa State GPU will allow model
tuning and testing at a much accelerated rate. Without ISU compute power, we anticipate that our
solution accuracy will suffer; the training process from randomized weights will likely take 2-3 days
with our anticipated sample set.

2.8 FINANCIAL REQUIREMENTS

Danfoss will finance up to $5000 for the deep learning solution development. Therefore, all image
capture and Danfoss-specific computing equipment related to this solution will be purchased and
provided by Danfoss. Given the component requirements communicated to Danfoss, our
component price estimates are below.

Component Approximate Price

Camera Equipment: Two FHD Cameras $1,000x 2 = $2,000

Computing Station: PC, Display, interfacing $2400

Stands: Cameras, PC, etc... $600

Total Financial Estimate $5,000

3 Design

3.1 PREVIOUS WORK AND LITERATURE

For our solution, we have looked into various topics on deep learning algorithms, Convolutional
Neural Networks, and the YOLO model for object detection. We plan to adopt these aspects and
algorithms in a way to accurately detect the paint defects of pumps.

Deep Learning Algorithms:

A class of machine learning that uses multiple layers to extract higher features from raw input. In
image processing, this can be used to identify image edges and various objects like faces, digits, or
letters.

Convolutional Neural Network:

A deep learning algorithm that is able to take an input image and assign weights to various parts of
the image. It has preprocessing built into the neural network. The convolutional network works to
mimic the connectivity pattern of human neurons in the visual cortex. By using a convolutional
neural network we can capture the spatial and temporal dependencies in the image.

YOLO Model:

You Only Look Once, the YOLO model uses real-time object detection that can achieve high
accuracy while being able to run in real-time. It is able to train on full images and optimize its
detection performance. This model is known to be extremely fast and intake the entire image in
training to encode contextual information about classes and appearance, Redmon et al.

3.2 DESIGN THINKING

There are several defining aspects of our defect detection model: low sample size, preprocessing
techniques, and camera setup will play a significant part in making our solution unique.

Relatively low sample sizes combined with high feature samples will likely impact our design
decisions more than any other factor. We are not yet on a finalized hardware setup, so anything is
subject to change, but it is likely that we have to utilize several techniques to prevent our model
from overfitting. Primarily, we believe that regularization to simplify our model and data
augmentation to scale our sample size will allow a scalable solution when it would otherwise not be
possible in this time frame. This is because the defect rate is relatively low and a dataset has not yet
been built.

Assuming the augmentation & regularization work, some aspects to shape our design relating to
preprocessing include: histogram equalization to help control lighting conditions, smoothing
techniques to filter noise, and standardization to get data in a simplified range while maintaining
outliers. We will use a YOLO model which is built for real time object detection.

Lastly, other setups and hardware-related aspects include several driving factors. First, multiple
cameras to capture images of every surface will be needed; the cameras will be implemented on a
standalone station that isn't connected to the Danfoss assembly network. Additionally, that station
will require a physical alarm to sound when a defect has been detected.

3.3 PrROPOSED DESIGN

For Object-Detection, we are using YOLO for both our toy model and the design itself. From our
research studies, the YOLO model processes images in real-time at 45 frames per second which
means this algorithm outperforms the other detection algorithms, including DPM and R-CNN,
when generalizing from natural images to other domains like artwork. Therefore, we think this
algorithm would be beneficial for this implementation since Danfoss would need a quick algorithm
in order to process multiple batches of pumps.

Like every Object Detection algorithm, YOLO requires a dataset in order to train the algorithm. So,
first and foremost, we would need to gather images from our client. After gathering the images we
received from the client, we would need to train our algorithm with the dataset we have obtained.
The performance of the algorithm relies greatly on the number of images, the number of epochs
being used, and of course, the accuracy of the object detection algorithm.

YOLO reasons globally about the image when making predictions. Unlike sliding window and
region proposal-based techniques, YOLO sees the entire image during training and test time, so it
implicitly encodes contextual information about classes as well as their appearance. Fast R-CNN, a
top detection method, mistakes background patches in an image for objects because it cannot see
the larger context. YOLO makes less than half the number of background errors compared to Fast
R-CNN, therefore, hit our objective to help Danfoss with reducing the number of defective units
and together, reduce the overall monetary loss.

3.4 TECHNOLOGY CONSIDERATIONS

There are many Object-Detection Algorithms such as Fast R-CNN, Faster R-CNN, Histogram of
Oriented Gradients (HOG), Region-based Convolutional Neural Networks (R-CNN), Region-based
Fully Convolutional Network (R-FCN), Single Shot Detector (SSD), Spatial Pyramid Pooling
(SPP-net), and You Only Look Once (YOLO).

However, for learning solutions, we have decided to use YOLO as our Object-Detection Algorithm.
Our reasoning is touched upon in the following paragraphs and concluded in the technology
considerations conclusion. Note that we only made a comparison between R-CNN and YOLO in
this section.

R-CNN:

R-CNN generates approximately 2000 region proposals using selective search from a given image
that are all manipulated & reshaped to be the same dimensions and then each are given to its own
convolutional neural network. The CNNs generate feature vectors from each region proposal, with
features such as texture, color, etc. to be considered. The feature vectors are then used by a support
vector machine to determine what category the region proposal is. Bounding boxes are then created
by the confidence rating of each of these region proposals.

Benefits:
1. Higher accuracy for smaller objects
a. Since R-CNN uses various regions to combine predictions, therefore, it is better at
analyzing several smaller regions.
2. Good localization due to use of various regions

a. The varying resolution on the region proposals leads to increased capabilities of
detecting objects of different sizes and locations

Disadvantages:
1. Large number of CNNs results in slow processing time
2. Large dataset needed
a. The need for complex data analysis suggests that R-CNN needs a large sample size
to train an accurate model

YOLO:

YOLO Network divides images into grids with G x G cells, and the grid then generates N predictions
for bounding boxes (G x G x N boxes in total). Each bounding box is limited to having only one class
during the time of prediction, which restricts the network from finding smaller objects.

YOLO unifies the task of object detection and the framing of the detected objects as the spatial
location of the bounding boxes is treated as a regression problem. As of this, the entire process of
calculating class probabilities and predicting bounding boxes is executed in one single Artificial
Neural Network (ANN), which enables optimized end-to-end training of the network, and enables
the YOLO network to perform inference in up to 45 FPS.

Benefits of using YOLO:

1. High-speed
a. YOLO is quite fast and can process 45 frames per second.

2. Image Generalization
a. YOLO network is able to generalize the image better.

3. Scaling Capabilities
a. YOLOvs architecture offers small, medium, large, and XL networks for varying

resolution and dataset requirements

b. YOLOvs is demonstrably capable of various types of input sequences

Disadvantages of using YOLO:
1. Comparatively low recall and high localization error.
2. Struggles to detect close objects because each grid can propose only 2 bounding boxes

For our given use cases of a single pump analyzed from a static position, the disadvantages of the
YOLO model are inconsequential. YOLO also allows for continuous, real-time analysis which meets
the requirement to stop the manufacturing process to prevent the continued defective painting of
pumps. R-CNN is too slow for this application.

3.5 DESIGN ANALYSIS

After performing several tests with around 106 images of defective and non-defective (see Section
4.4 for result), the YOLO model has demonstrated capabilities at identifying non-defective and
defective pumps. As shown in Section 4.4, we are able to detect both defective and non-defective
pumps.

Although we are able to detect defective units, however, we think that we would have problems
identifying a low-paint pump (shown below), which would also be considered as a defective pump.

The three dotted circles shown in the above diagram are low-painted areas that consequently
classify the pump as a defective unit. One possible method to solve the low-painted area detection
is to place bounding boxes only around defective regions. The problem with the aforementioned
method is that this method does not work logically with pumps that have no paint.

Another possible method is to train a high-resolution R-CNN to detect defects on the low paint
pumps. Unlike YOLO, this method could not be high FPS (Frame per Second). Therefore, training
with a high-resolution R-CNN would require a more expensive setup with sensors and a strong
computing station. Our proposed solution to detecting challenging defects is to reduce the
bounding box area of interest to the specific defect present in the pump. In effect, no paint pumps
will have bounding boxes enclosing the pump entirely, but pumps missing paint in only one small
region will have bounding boxes enclosing that region only.

3.6 DEVELOPMENT PROCESS

For the detection of paint defects, we have decided to follow an agile development process. Agile
development allows us to maintain a small buffer of research-orientated features that can be
implemented in the future. By following this process we are also able to retrospectively implement
continuous improvements to the solution and its overall development. It also allows us to involve
the client directly in the development process allowing for the knowledge of individual components
to be shared among team members.

For our specific solution, each part will have its own milestone. For example, the YOLO model will
have its own milestone separate from the rest of the solution. From this, we will move on to getting
the basic model setup, integration of the model, and then testing.

3.7 DESIGN PLAN

For the development process, we are following Agile, which is based on iterative development.
Requirements and solutions evolve through collaboration between cross-functional teams,
therefore, we think this development process would be strong for us and our client. With Agile
development, we can focus on developing one milestone at a time. For instance, the developer team

can work on installing the hardware such as the cameras before we can move on to the next
development phase.

For the base of our model, we will be using YOLO. This allows us to use real-time analysis at 45
frames per second. YOLO will also be able to generalize the image better and faster than other
R-CNN models. While there are disadvantages to using YOLO we can mitigate the most prevalent
risks through tuning, training, and testing with our samples Danfoss has provided to us. Following
our Gantt chart, we will establish a YOLO baseline then move on into generating a descriptive
statistic which will make it easier for us to execute augmentation development and model training.

4 Testing

Testing is an important part of the design process. For our model, we will run hardware and
software tests to make sure the accuracy of the YOLO model matches our requirements with the
pumps supplied to us. Danfoss samples were labeled then ran through YOLO where it was detected
as either defective or non-defective allowing us to tune the toy model’s object detection for
presentation to Danfoss.

4.1 UNIT TESTING
Hardware Testing:

e Image Collection: We need to verify that the overall quality of pump images captured by
the camera(s) is sufficient for the models to process.

e Buzzer: The buzzer will need to be tested to ensure that it produces sound and that the
sound it produces is loud enough to be heard on the floor. This testing will also include
verifying that the wiring for the buzzer and the controller for the buzzer function properly.

Software Testing:

e Pump Identification: We need to ensure that our system will recognize the pumps. This
will be verified by manually adding metadata to images that specify the appropriate
bounding box to capture the pump in the image and then verifying that the model
identifies pumps within this bounding box with a border error of no more than 5 pixels on
any border in any direction.

e Pump Classification: We need to ensure that the model correctly identifies pumps as
defective or non-defective. This will be tested by reserving a set of data for testing which
the model will not see during training. After the model has been trained, and it passes
initial evaluations using the training data, then it will be tested on the testing data. The
model will need to demonstrate an accuracy of at least 80%.

4.2 INTERFACE TESTING

The camera(s) will be connected to the model so that the image collection to model processing
pipeline can be tested to see the impact on model accuracy. The model will be connected to the
buzzer to test that when a defect is detected the buzzer is activated.

We have three distinct units: two cameras, a buzzer, and our central computer. Each of these units
must be able to interface between itself and the computer.

4.3 ACCEPTANCE TESTING
In order to make sure that we meet our requirement specifications, we have demonstrated a YOLO
v5 Object Detection Toy Model to our client, Danfoss.

For this to be carried out, Danfoss needed to provide us with a few defective and non-defective
image samples. Once Danfoss had provided us with the images, we then performed image labeling
for defective and non-defective pumps. Lastly, we trained YOLO vs5 with the toy dataset to obtain
overfitting. We believe this is a solid representation of model learning.

4.4 ResuLts

We have only received a few pump images from our client for our toy model which are about 54
non-defective pump images and 26 defective pump images. Therefore, we were only able to perform
elementary defect detection testing with YOLO vs5 due to the limited sample size. Below are sample
results from our image labeling and dataset training.

Image Labeling Process

The above images show the labeling process using makesense. In the Al interface, we draw a border
tight around the pump in the image then assign a label to the image to designate a defective pump
with a 1, and a non-defective pump with a o.

Image Labeling Result

=x= <y> =width> <height> - float values relative to width and height of image, it can be equal from (0.0 te 1.0]

P @.401350 ©.442368 @.631360 8.769470

1 @8.431624 8.460684 8.6450814 8.729915

The labels, in the format above, are then converted into YOLO format to be used in the prototype
model.

0.10

0.08

0.06

0.04

0.14
0.12
0.10
0.08
0.06

0.04

=)

o

Box

200

val Box

0.018

0.016

0.014

0.012

0.010

0.4

0.3

0.2

0.0

o

o

Model Performance Visualization

Objectness

—e— results

200

val Objectness

0.025

0.020

0.015

0.010

0.005

Classification

0 200

val Classification

0 200

Precision

200
mAP@0.5

Recall
1.0

0.8

0.6

0.4

0.2

o

200
mAP@0.5:0.95

0.6

0.4

0.2

0.0

o

200

5 Implementation

The implementation plan for Fall 2021 has been continually revised and developed such that it
revolves entirely around our Gantt chart and functional decomposition, broken down into 2-week
development sprints. Tasks with higher risk potential have a focus on completion earlier in the
semester: tuning, labeling; tasks that are depended upon heavily by other tasks are prioritized for
the beginning of the semester: configuration, data augmentation, generating statistics.

The development of our solution can be broken down into 5 logical phases:

1. Label images from client & configure training environment

a.

b.

We plan to receive a large number of images from our client to use for training and
testing the model; the only issue is that the samples are not labeled. Anticipating
5000 images to label, considerable time will be invested into discarding
problematic images, labeling retained images, and asking the client to confirm the
labels. Our conservative estimates are that labeling 5000 images will take around
30-40 hours considering data handling, etc.

At the beginning of the Fall 2021 semester, we will email ETG requesting computing
resources utilizing ISU GPU compute power. This will help reduce training times
from several days to as short as a day or two, hopefully. Beyond that, we will link
our training environment up with our GitLab repository for efficient deployment,
CICD if necessary.

2. Perform analysis on defect classes and data augmentation on the dataset

a.

Assuming images are labeled as needed, and our prototype is deployed to an ISU
server with a capable GPU, we will begin generating descriptive statistics for each
defect class and the data augmentation process. It should be feasible to gather
histogram, mean, median, range, and more data for each class and represent them
in a digestible format before we begin model training and tuning. Additionally, we
seek to perform data augmentation such that 1 sample image can give us 5-10 input
images. This should scale our dataset by 5x on a conservative estimate; hopefully,
this will allow us to train on high-resolution images with a large YOLOvs
architecture.

3. Train the model, tune the model

a.

After labeling and augmenting the images, we will train the model. The training
process requires a high-performance computer to train all the labeled images with
a high epoch and will take a considerable time to compute. Our conservative
estimates are that our dataset will be around 20,000 images after data
augmentation. With this input set, we should have no issues tuning the model
with a significant verification set. Of course, we will look for the model detecting
significance in the areas we previously generated descriptive statistics for. Efforts
will be made to ensure the model is not severely underfitting or overfitting.

4. Test the pipeline, integrate software and hardware

a.

This process will be performed in parallel with training and tuning. Assurance will
need to exist that our data augmentation was performed correctly and that our
pipeline is not behaving in any surprising ways. Introductory software-hardware
integration will be made to begin efforts to deploy the model to the client-server.

5. Deploy the model, deliver analysis & model statistics
a. Lastly, we will be deploying the model to a Danfoss server environment capable of
interfacing with the assembly line if Danfoss IT clears our solution. During this
process, we will be delivering our model statistics as well as the descriptive
statistics we gathered during stage 2. We want clear communication on our
findings during training and development that Danfoss can utilize and replicate in
their final solution.

6 Closing Material

6.1 CONCLUSION

We have researched and decided upon using YOLO as our solution to the problem of real-time
analysis of visual data. We have established a planned course of action of Danfoss collecting data
over Summer 2021 and our training of the YOLO model Fall 2021. Our goal is to provide Danfoss
with a solution to reduce the number of pump paint defects by 40% by providing early detection of
defectively painted pumps. We have chosen YOLO as our model because it generalizes the image.
This allows YOLO to be faster, operate effectively at a smaller dataset, and is designed to be used in
a real-time environment.

6.2 REFERENCES

B. Dwyer, “Using Your Webcam with Roboflow Models,” Roboflow Blog, 30-Mar-2021. [Online].
Available: https://blog.roboflow.com/python-webcam/. [Accessed: 21-Apr-2021].

Open Data Science, “Overview of the YOLO Object Detection Algorithm”, Medium, 25-Sep-2018.
[Online]. Available: https://medium.com/@ODSC/overview-of-the-yolo-object-detection
-algorithm-7bs2a745d3eo. [Accessed: 21-Apr-2021].

Johanness Sjolund & Johanness Ronnqyvist, “A Deep Learning Approach to Detection and
Classification of Small Defects on Painted Surfaces", Master Thesis, Industrial Engineering and
Management, Umea University, Umea, Sweden, 2019. [Online]. Available: https://www.diva-
portal.org/smash/get/divaz:1325010/FULLTEXTo1.pdf. [Accessed: 21-Apr-2021].

J. Solawetz, “How to Train YOLOvs On a Custom Dataset,” Roboflow Blog, 02-Mar-2021. [Online].
Available: https://blog.roboflow.com/how-to-train-yolovs-on-a-custom-dataset/. [Accessed:
21-Apr-2021].

Redmon, Joseph et al. “You Only Look Once: Unified, Real-Time Object Detection.” 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2016): 779-788.

Saha, Sumit. “A Comprehensive Guide to Convolutional Neural Networks-the ELI5 Way.” Medium,
Towards Data Science, 17 Dec. 2018,
towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eliz-way-3b
d2b1164as3.

6.3 APPENDICES

There are a few classifications to which a pump can belong. The ideal classification is non-defective,
but there are a few common defective classifications. The main defective classifications are low
paint, no paint, splatter paint, and orange peel. Low paint is when a pump is partially painted but
not completely painted. No paint is when a pump was not painted at all. Splatter paint is when the
paint only appears in streaks. Orange peel is when the paint is not smooth and has a bumpy surface
like that of an orange peel.

Low paint Orange peel No paint

